bs theory

Type I Superconductors
sted at right below are called Type I superconductors. The identifying characteristics are zero electrical resistivity below a critical temperature, zero internal magnetic field (Meissner effect), and a critical magnetic field above which superconductivity ceases.
The superconductivity in Type I superconductors is modeled well by the BCS theory which relies upon electron pairs coupled by lattice vibration interactions. Remarkably, the best conductors at room temperature (gold, silver, and copper) do not become superconducting at all. They have the smallest lattice vibrations, so their behavior correlates well with the BCS Theory.
While instructive for understanding superconductivity, the Type I superconductors have been of limited practical usefulness because the critical magnetic fields are so small and the superconducting state disappears suddenly at that temperature. Type I superconductors are sometimes called "soft" superconductors while the Type II are "hard", maintaining the superconducting state to higher temperatures and magnetic fields.

Critical Temperature for Superconductors

The critical temperature for superconductors is the temperature at which the electrical resistivity of a metal drops to zero. The transition is so sudden and complete that it appears to be a transition to a different phase of matter; this superconducting phase is described by the BCS theory. Several materials exhibit superconducting phase transitions at low temperatures. The highest critical temperature was about 23 K until the discovery in 1986 of some high temperature superconductors.
Materials with critical temperatures in the range 120 K have received a great deal of attention because they can be maintained in the superconducting state with liquid nitrogen (77 K).

0 komentar:

Post a Comment

Related Posts with Thumbnails
GiF Pictures, Images and Photos